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CONSPECTUS: Despite great advances in molecular
dynamics simulations, there remain large gaps between the
simulations and experimental observations in terms of the time
and length scales that can be approached. Developing fast and
accurate algorithms and methods is of ultimate importance to
bridge these gaps. In this Account, we briefly summarize recent
efforts in such directions. In particular, we focus on integrated
tempering sampling. The efficiency of this sampling method
has been demonstrated by applications to a range of chemical
and biological problems: protein folding, molecular cluster
structure searches, and chemical reactions. The combination of
integrated tempering sampling and a trajectory sampling method allows the calculation of rate constants and reaction pathways
without predefined collective coordinates.

1. INTRODUCTION

With the fast development of computer hardware and
computational methods, great progress has been made in
molecular simulations of complex systems, which are important
in many areas including chemistry, biology, physics, and
material sciences. A major obstacle in understanding the
structure and dynamics of complex systems, including macro-
molecules and large molecular clusters, relates to the
exploration of complex energy landscapes. Since fast degrees
of freedom, such as vibrations, limit the integration time step in
a simulation to femtoseconds or shorter, even a microsecond
simulation requires the propagation of equations for many
degrees of freedom over billions of steps, leading to a very high
computational cost.1 A number of methods have been
developed over the last several decades to overcome the
computational bottleneck of molecular simulations. These
methods are mainly designed to alleviate difficulties related to
the large time and length scales of complex systems and to
enhance the sampling in the most relevant phase space. In this
sense, the development of coarse-grained models represents a
viable strategy for enhanced sampling but is not the focus of
this Account. Instead, we review enhanced sampling techniques
that allow an accelerated search in the configuration and
trajectory space and thus fast thermodynamics and/or kinetics
calculations. Largely as a result of such efforts, significant
progress has been made over the past several decades, and
molecular dynamics (MD) simulations are now routinely used
to provide structural, thermodynamic, and even dynamical
information on complex molecular systems.

The high energy barriers between different structures/
conformations mean that transitions between them, such as
activated chemical reactions and concerted structural changes,
appear as rare events. Between the transitions, the stable
structures are repeatedly sampled and, very often, the sampling
of the reactant structures becomes redundant. Therefore, when
one calculates thermodynamic properties, it is convenient to
make use of equilibrium statistical mechanics to enhance the
sampling of rare events by systematically modifying the
potential energy surface, e.g., by decreasing the energy barrier
to enhance the sampling over the transition regions. Such
methods include but are not limited to the widely used
umbrella sampling,2 J-walking,3 adaptive umbrella sampling,4

metadynamics,5 accelerated MD simulation,6,7 conformational
flooding,8 conformational space annealing,9 hyperdynamics
simulation,10 potential smoothing methods,11 and adaptive
biasing force methods.12 To effectively guide the simulations,
some methods, such as the popular umbrella sampling and
metadynamics simulations and their many variants, use
predefined collective coordinates. Alternatively, especially
when it is difficult to identify proper collective coordinates,
generalized ensemble methods can be used to generate a
uniform distribution of energy (or temperature) in an MD
simulation. A number of such methods have been tested and
used, the most popular of which include replica-exchange
molecular dynamics (REMD),13 parallel tempering,14 multi-

Received: July 28, 2014
Published: March 17, 2015

Article

pubs.acs.org/accounts

© 2015 American Chemical Society 947 DOI: 10.1021/ar500267n
Acc. Chem. Res. 2015, 48, 947−955

pubs.acs.org/accounts
http://dx.doi.org/10.1021/ar500267n


canonical simulation,15 the Wang−Landau algorithm,16 stat-
istical temperature sampling,17 simulated tempering,18 and the
enveloping distribution sampling method,19 among many
others. Other recent developments of free energy calculation
methods include the random walk in an orthogonal space20 and
diffusion-map-directed molecular dynamics simulations.21

In studies of structural and conformational changes of large
molecules (e.g., protein folding), REMD is probably the most
widely used enhanced sampling method. REMD enhances the
sampling of rare events by simulations using replicas at both
low and high temperatures. The equilibration in the entire
system makes it difficult to enhance the sampling over only a
selected collection of degrees of freedom. Such problems have
been investigated by Berne and co-workers, who developed the
replica exchange with solute tempering (REST) method.22 The
applicability of the REST method to a broad range of molecular
systems needs to be further tested.
Instead of running parallel simulations at many different

temperatures, the integrated tempering enhanced sampling
(ITS) method23 generates a generalized non-Boltzmann
distribution covering a large energy range, similar to the
enveloping distribution sampling method.19 The method allows
fast sampling of the configuration space and efficient
calculations of thermodynamic properties based on a fast
evaluation of the partition function. In this Account, we focus
mainly on the theoretical background and numerical
implementation of the ITS method and give a few examples
of its applications. Possible future development and applica-
tions of this method are also discussed.

2. INTEGRATED TEMPERING SAMPLING AND
SELECTIVE INTEGRATED TEMPERING SAMPLING:
ENHANCED SAMPLING IN ENERGY AND
CONFIGURATION SPACES

In ITS, the sampled energy range is broadened through the
introduction of a sum-over-temperature non-Boltzmann
distribution factor (see the Supporting Information for further
details). The distribution corresponding to the distribution
factor is obtained either through a Monte Carlo procedure or
by using the effective force calculated from the following
effective potential energy:
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where U is the potential energy of the system under study, β0 =
1/kBT0 (where kB is the Boltzmann constant and T0 is the
temperature of the system), βk denotes a series of temperatures
covering both low and high temperatures around T0, and nk
denotes weighting factors obtained through an iterative
procedure.23,24 The biased force Feff used in the simulations is
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where F is the force in the original system. Unlike methods
using collective coordinates such as umbrella sampling and
metadynamics, the ITS and REMD methods are both
implemented in the absence of predefined reaction coordinates.
In contrast to the REMD method, the ITS method avoids
multiple parallel calculations and exchange operations between
parallel trajectories and thus requires fewer computational
resources. It also circumvents the problem of re-equilibration

for the kinetic energy arising from the exchange events in
REMD. In addition, since the enhanced sampling is performed
in the energy space, unlike the REMD method, it is convenient
in the implementation of ITS to divide the system into
subspaces and to enhance the sampling for a preselected
subsystem; this approach is called selective integrated temper-
ing sampling (SITS). For example, in explicit-solvent
simulations of protein folding, the protein atoms can be
targeted for enhanced sampling, and a large variety of protein
configurations (e.g., both folded and unfolded) can be sampled
while the solvent is kept at the near-room-temperature
configurations.25 The differentiated sampling of such a system
is conveniently achieved by introducing an effective potential in
the form
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In the above equation, the total energy U is divided into
multiple components:

= + +U E E Ep w pw (4)

where Ep, Ew, and Epw are the internal energy of the part of
interest (protein), the internal energy of all water molecules,
and the energy of interactions between the protein and water,
respectively.
From ITS or SITS simulations, a converged calculation yields

a biased distribution function in the configuration space, ρeff(r)
∝ e−β0Ueff(r). The desired distribution function at the temper-
ature T0 is easily calculated as

ρ ρ= β− −r r( ) ( )e U r U r
eff

[ ( ) ( )]0 eff (5)

where ρeff(r) is calculated from the enhanced sampling
simulation and Ueff(r) is defined as in eq 1 or 3. Other
thermodynamic properties can be readily obtained once ρ(r) is
known.25,26

In a few tested examples, ITS and SITS were shown to be
highly efficient.25,26 For example, SITS was applied to study the
conformational transition of alanine dipeptide in aqueous
solution. The potentials of mean force (PMFs) for the main-
chain ψ torsion angle calculated using SITS (blue ○), umbrella
sampling (black +), and REMD (red △) are shown in Figure
1a. Apparently, the PMF obtained using a 40 ns SITS

Figure 1. PMFs in ψ for alanine dipeptide in explicit-solvent
simulations. (a) PMFs in ψ obtained from enhanced sampling
simulations. (b) Computed uncertainties for nonoverlapping 2 ns
blocks.
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simulation is in good agreement with that calculated using an
umbrella sampling simulation. The umbrella sampling simu-
lation used the ψ angle as the reaction coordinate, whereas in
the SITS calculation, no reaction coordinate was used or
needed. Furthermore, the error bars calculated for the SITS
results are smaller than those obtained for the much longer
REMD simulation (800 ns), further showing the high efficiency
of SITS. In a study of a simple peptide model system,26 we
compared ITS with several other popular enhanced sampling
methods to show that ITS is more efficient in configuration
sampling and free energy calculations for this model system
(see the Supporting Information for further details).

3. APPLICATIONS

In the following we present examples of applications of ITS/
SITS to complex problems such as protein folding, molecular
cluster structure searching, and chemical reactions.

3.1. Protein and Polypeptide Folding

Proteins fold into native structures to carry out their biological
functions. Understanding the protein folding mechanism is of
fundamental importance to biology. As a result of complicated
inter-residue interactions, protein folding is typically a slow
process with a complex free energy landscape. The sampling of
protein conformations by means of MD simulations is a
difficult problem. The application of ITS allows multiple
reversible folding and unfolding events to be observed for a
variety of polypeptides and small proteins by microsecond-long
all-atom simulations.27−31 The equilibrium sampling of the
protein structures allows not only a quantitative assessment of
the force fields used but also a detailed analysis of the protein-
folding free energy landscape. The calculated population
distribution of low-free-energy structures and comprehensive
pictures of the low-free-energy protein folding pathway were
compared directly with experimental results.31,32

In a series of studies, the folding of β-hairpins and its
temperature dependence were investigated by conducting ITS
molecular dynamics (ITS-MD) simulations. Through a
comparative study of β-structured polypeptides, including
peptide 1, the C-terminal β-hairpin from the B1 domain of
protein G (GB 1p), TRPZIP2, and TRPZIP4, we investigated
the important role of the turn conformational propensity in
dictating the folding pathway of the β-hairpin. It was found that
in the presence of a strong turn-promoting sequence, β-hairpin
folding is accelerated and turn formation is an easy process
compared with packing of the cross-strand hydrophobic core
and the assembly of backbone hydrogen bonds; otherwise, turn
formation becomes the rate-limiting step, and the folding
process is initiated by the packing of the hydrophobic core.27,28

This observation is consistent with the results of circular
dichroism (CD)/infrared temperature-jump studies33 and
NMR/CD spectroscopy studies.34 In addition, the simulations
predicted that the stabilities of the backbone hydrogen bonds of
the four polypeptides depend differently on the temperature.27

Using the same simulation methodology, we evaluated the cold
denaturation tendency of five β-structured polypeptides
(MrH1, MrH4a, MrH3a, MrH3b, and MrH4b)35 and again
obtained results that were in good agreement with the
experimental results.36

ITS-MD simulations were also performed to systematically
investigate the folding mechanism of α-helix bundle proteins,
including the B domain of protein A from Staphylococcus aureus
(BdpA, 46 residues), α3D (73 resides), and α3W (67 residues)
(Figure 2, top panel).29,30 For each protein under study, the all-
atom ITS-MD simulations again yielded multiple folding and
unfolding events. In all of the folding events, the proteins
reached native-like structures with small root-mean-square-
deviation (RMSD) values, which had been difficult to
obtain.37,38 The subsequent free energy landscape analysis
showed that the folding mechanisms of the helical bundles are

Figure 2. (top) Comparison of the simulated best structures (blue) and the NMR structures (red) of α3D, α3W, and BdpA. (bottom) Folding
mechanism classification based on the average percentages of hydrophobic and charged residues, and the two-dimensional free energy landscapes of
(left) α3D and (right) α3W indicating nucleation−condensation and framework folding mechanisms, respectively. The dashed lines in the free energy
landscapes represent the folding pathways connecting the distinct states on the configuration space (partially folded (P1 and P2) and folded (F)
states).
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heavily sequence-dependent although their native structures
have similar topologies (Figure 2, bottom panel).
In another application, in collaboration with the experimental

group, we combined ITS-MD simulations with an ion mobility
spectrometry (IMS) experiment to decipher the gas-phase
conformations of various proteins/polypeptides. The tested
polypeptides included protonated TRPZIP1 and its deriva-
tives,39 alkali-metal ion (Na+, K+, Cs+) adducts of gramicidin A
(GA),40 and bradykinin fragments 1−5 (RPPGF) and 1−8
(RPPGFSPF).41 For each polypeptide, the calculated ion−
neutral collision cross section and its variance with the
protonation state and the binding of metal ions were in good
agreement with the IMS measurements. These studies showed
that the combined ITS-MD and IMS approach provides a
straightforward and efficient method for measuring the intrinsic
conformational preferences of proteins.

3.2. Searches for Stable Structures of Molecular Clusters

Another area in which the ITS method finds its application is
the search for stable structures of molecular clusters and the
following calculations of their thermodynamic properties.
Molecular clusters are normally characterized by complex
energy landscapes, with many local minima separated by
relatively high energy barriers. As a result, although a large
number of water cluster structures have been identified by
previous studies, it remains a great challenge to identify new
stable isomers. The difficulty relates to effectively crossing high
energy barriers and at the same time locating energy minima.
Such difficulties can be largely alleviated by ITS-MD
simulations, which have been shown to be efficient in
sampling/identifying low-energy structures of clusters of varied
chemical compositions and sizes.

In recent studies, ITS-MD simulations in combination with
density functional theory (DFT) calculations allowed us to
sample more efficiently the structures of water and water−salt
clusters. To benchmark the method, we first searched for low-
energy structures of pure water clusters that had been
extensively studied. In these studies, classical ITS-MD
simulations were performed, followed by energy minimization
using the low-energy structures generated in the ITS-MD
simulations. The structures were then further optimized by
conducting quantum-chemical calculations employing disper-
sion-corrected density functionals such as BLYP-M2,42

ωB97XD,43 and B2PLYPD.44 Using this approach, we obtained
not only all of the low-energy structures of (H2O)12 and
(H2O)20 found by previous studies45,46 but also new structures,
for example, a new lowest-energy structure for (H2O)20
(structure A in Figure 3a).
The ITS-MD−DFT protocol was then used to investigate

the structure and intermolecular interactions in salt−water
clusters, such as LiI(H2O)n, CsI(H2O)n, and NaCl(H2O)n. The
calculations clarified the features common to these different
clusters; e.g., anions but not cations tend to reside at the cluster
surface. Furthermore, the structures of CsI(H2O)10 resemble
those of (H2O)12, replacing two water molecules with Cs+ and
I¯. CsI(H2O)18 clusters tend to contain a clathrate-like motif,
with Cs+ remaining at the center of a cage formed by 17 water
molecules and the I¯ ion, resembling well the clathrate-like
structure of (H2O)20 (Figure 3b). In contrast, the stable four-
coordinate Li+ dictates the structure of LiI(H2O)n clusters.
Interestingly, we found that the number of water molecules
needed to form solvent-separated ion pairs varies with the salt
pair, being 5 and >20 for clusters containing LiI, and CsI,
respectively (Figure 4). Our ongoing study has shown that this
number is around 10 for NaCl. These results indicate that the

Figure 3. (a) Low-energy structures of the (H2O)20 cluster and (b) comparison of MI(H2O)n clusters with (H2O)n+2 clusters (n = 10, 18; M = Li,
Cs). The relative energies calculated using different functionals are presented in (a).
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hydration of salt ions is ion-pair-specific and that the structures
of salt−water clusters are determined by the competition
among ion−ion, ion−water, and water−water interactions.
Furthermore, the ITS simulations provided thermodynamic
information, such as the temperature dependence of the
distribution functions of the water coordination number and
cation−anion distance.47 The latter information is important
for our understanding of the ion-specific Hofmeister series.48

3.3. Quantum-Mechanical/Molecular-Mechanical (QM/MM)
Calculation of Solution Chemical Reactions

SITS can be naturally introduced into QM/MM calculations, in
which only a small part of the simulation system is treated using
quantum mechanics and the rest is treated by classical
molecular mechanics. For such calculations, since the events
of interest (e.g., chemical reactions) normally occur within the
quantum region, it is desirable to explore the molecular
configurations of the quantum-mechanically treated subsystem.
One can easily make use of the SITS scheme to enhance the
sampling over the QM region while keeping the MM part less
perturbed by introducing the effective potential

∑
β

= − β− +U E n
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ln e
k

k
E E
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where EMM is the self-energy of the MM region (e.g., the
solvent), EQM is the self-energy of the QM region (e.g., the
reacting molecule), and EQM/MM is the energy of the interaction
between the QM and MM regions.
Such a scheme was applied to gain an understanding of the

solvation and substituent effects in the Claisen rearrangement
(Scheme 1). Although the Claisen rearrangement50 was the
earliest recorded [3,3] sigmatropic reaction, the water-
acceleration effect on this reaction has drawn wide interest,

with the mechanism remaining unclear. To reveal more details
concerning the solvation effect of the aliphatic Claisen
rearrangement, a SITS-QM/MM simulation protocol was
designed in which the solute (i.e., the reactant) was treated
quantum-mechanically employing the self-consistent-charge
density-functional tight-binding (SCC-DFTB) method devel-
oped by Elstner et al.51 Higher-level QM methods such as DFT
and the coupled-cluster singles and doubles model can also be
employed but would require more computational resources. All
of the solvent molecules were treated with MM. SITS was
integrated into such a hybrid simulation method to specifically
achieve an efficient sampling of the QM-treated reactant. In the
simulation, the reactant, allyl vinyl ether (AVE), reached a
conformational equilibrium between compact and extended
conformations. The conformational equilibrium constant was
calculated over a range of temperatures. It was found that there
was a shift in the equilibrium toward the compact conformation
under aqueous conditions compared with the conformational
distribution of the same molecule in methanol or toluene. At
300 K, the probability that AVE adopts the compact
conformation is about 6% in water but only about 2% in
toluene. The compact conformation (Figure 5a,b), which is the
proper configuration for the subsequent chemical reaction, was
found to be polarized with respect to the extended
conformation according to Mulliken population analysis of
the QM/MM-calculated data.
SITS-QM/MM simulations also allowed us to observe

directly the transition of AVE to 4-pentenal (Scheme 1 and
Figure 5c). Therefore, SITS allowed the chemical transition
process over high barriers to be realized in silico without any
intrinsic reaction coordinates. SITS herein exhibited excellent
capability and adaptability for sampling of chemical events.

4. EFFICIENT KINETICS CALCULATIONS: ENHANCED
SAMPLING OF REACTIVE TRAJECTORIES

One of the common problems in applying enhanced sampling
methods over energy or configuration space is that dynamics as
well as kinetics information on the original system is lost as a
result of the use of effective Hamiltonians. In many cases,
especially in studies of reaction mechanisms, it is desirable to
obtain information on pathways of transitions on a complex
and many-dimensional energy surface. A few methods have
been developed to search for transition paths effectively,
including the nudged elastic band method,52 the string
method,53 the weighted-ensemble method,54 milestoning,55

and the forward flux sampling method.56 However, it is
generally difficult to obtain kinetics information for chemical
reactions directly using the above-mentioned methods,
although the calculation of free energies along the minimum-
energy or minimum-free-energy paths does allow evaluation of
the rate constant with the help of transition state theory.
One effective method of sampling reactive trajectories is

transition path sampling (TPS), which was proposed by
Chandler and co-workers.57 In TPS, an initial trajectory is
obtained to connect the reactant and product states employing
methods such as targeted molecular dynamics or high-
temperature simulations. Such a trajectory can be “unreal”
but is used to generate an ensemble of trajectories employing a
shooting and shifting Monte Carlo procedure. To further
improve the computational efficiency and especially to calculate
the rate constant, a few variants of the method have been
proposed, including transition interface sampling58 and the
related partial path transition interface sampling.59

Figure 4. Cation−anion (Li−I and Cs−I) distance R (normalized by
the bare ion distance R0) as a function of the number of water
molecules n. The LiI and CsI data were taken from Li et al.49 and Liu
et al.47

Scheme 1. Aliphatic Claisen Rearrangement Reaction and
the Indices of Heavy Atoms of the Reactant (Allyl Vinyl
Ether) and the Product (4-Pentenal)
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Although TPS is efficient in generating successful transition
paths around a known pathway without the requirement of
predefined reaction coordinates, the ratio of the number of
successful trajectories to the total number of trajectories is
needed for the accurate evaluation of rate constants. Such a flux
calculation has to be done separately in TPS and related
methods. It is thus desirable to further develop methods that
easily sample all of the important reaction pathways and
perform rate constant calculations without any information on
preselected reaction coordinates. Inspired by TPS, we
introduced a combined approach that takes advantage of both
ITS-MD and TPS (shooting) methods.60 In this method, we
first carry out ITS-MD simulations to identify the active phase
space of the reaction of interest. Path sampling is then
performed on the original potential energy surface starting from
the phase space points sampled by the ITS-MD simulation
(and thus having a known Boltzmann distribution), which
automatically gives an enhanced sampling of rare events such as
chemical reactions over high energy barriers. Since the
statistical weight of each trajectory can be calculated using eq
5, the rate constant for the original system can be obtained
directly as the ratio of the reactive and total trajectories:

=
∑

∑t
rate

e

e

f v k T

f v k T
succ traj

( )/

all traj
( )/

B

B
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Furthermore, since trajectory shooting is performed using an
ensemble of phase space points biased toward successful
transitions, this reactive trajectory sampling method increases
the efficiency in rate constant calculations and reaction pathway
searching. Compared with traditional TPS, there are three
major advantages: (1) the initial trajectories are automatically
generated by efficient ITS-MD simulations; (2) a thorough
sampling of the phase space avoids the entrapment of
trajectories in particular pathway(s), allowing the search of
multiple pathways separated by high barriers; and (3) both the
reactive and nonreactive trajectories are calculated directly,
avoiding the need for a predetermined reaction coordinate and
the calculation of the reactive flux.
The above method has been applied to a model system with

multiple minima on its free energy surface24 as well as the
conformational change of methyl maltose.60 For the latter
application, first, ITS-MD simulations were conducted and a
couple thousand phase space points were selected to shoot
trajectories on the original (unbiased) potential energy surface.

The logarithm of the visiting probability as a function of two
torsional angles was calculated from the successful transition
path ensemble and is shown in Figure 6. All three transition

pathways found in a previous TPS study61 were also captured in
this study. The most favorable transition path ensemble is E1,
which goes through a rotation about ψ in the negative direction
and passes through transition state T1. A less favorable
transition path ensemble is E2, which passes through
metastable region G instead of T1. The third transition path
ensemble is E4, which passes through transition state T2. By
means of this approach, in a total simulation time of
approximately 3.2 μs, 10729 successful transition trajectories
were obtained. If normal MD simulations has been used, only
∼20 transitions would have been observed. Thus, there is a
remarkable improvement in the transition sampling efficiency
when the current method is used.
The SITS-based trajectory sampling method could also be

applied to the QM/MM simulation of the Claisen rearrange-
ment mentioned above. The calculated rate constants are in
good agreement with experimental results (see the Supporting
Information).

Figure 5. (a, b) Typical structures of the compact conformation defined in the QM/MM study, including (a) a quasi-six-membered ring and (b) a
quasi-eight-membered ring. (c) Snapshot of the chairlike structure of the transition state.

Figure 6. Logarithm of probabilities of states over φ and ψ calculated
from successful transition path ensembles.
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5. SUMMARY

In this Account, we have summarized the ideas of enhanced
sampling methods based on the integrated tempering sampling
technique in both phase and trajectory spaces. The existing
applications of ITS have shown its efficiency in configuration
searching and thermodynamic calculations for problems
ranging from protein folding/unfolding to molecular cluster
structure sampling and chemical reactions. In particular, this
method can be used to selectively enhance the sampling of a
selected subsystem (SITS), which makes it a potentially useful
tool in many biomolecular simulations in complex environ-
ments. Meanwhile, enhanced sampling of reactive trajectories
and rate constant calculations can be achieved with low
computational cost when ITS is used in combination with the
transition-path shooting technique. These methods are
expected to have broad applications for a large variety of
complex systems.
As illustrated in the previous discussions, significant progress

has been made over previous decades in developing efficient
and reliable sampling methods for studies of complex systems.
Many of these methods have been successfully applied to a
range of chemical and biological problems. However, even with
the help of these methods, many calculations are still too
demanding. It is therefore important to look into the further
development of efficient simulation methods, including new
sampling algorithms. The ITS method described in this
Account certainly has its own limitations and needs further
improvement. For example, it is an advantage that ITS
enhances the sampling of complex systems without a priori
reaction coordinates. However, such a feature of the method
could also be a weakness. By effectively combining the ability of
ITS to quickly scan a large energy space and the abilities of
other methods to accelerate the sampling along defined
collective coordinates, one could further improve the sampling
efficiency. Along this direction, in a recent study ITS was
combined with umbrella sampling to obtain better and faster
convergence in free energy calculations.62 Another difficulty of
ITS is that it is difficult to achieve convergence of the weighting
factors nk in eq 1 for large systems. In a recently proposed
procedure,63 a set of nk was estimated from the precalculated
average potential energies at a series of temperatures, which is
again not effective enough for large systems. New algorithms
with self-adaptive abilities are needed.
In summary, it remains a challenge to develop new methods

to be used in studies of complex problems such as large-scale
protein conformational changes, protein−ligand binding and
protein aggregation, and, more generally, phase transitions.
Sampling algorithms in trajectory space are also needed to
further reduce the computational cost in obtaining large
numbers of transition trajectories for kinetics calculations as
well as for the quantitative study of nonequilibrium processes.
It appears necessary to choose and combine different
approaches that specifically fit the system of interest and its
physical processes. Desired sampling methods should preserve
both thermodynamic and kinetic information. For many
methods, their abilities to reproduce correct thermodynamic
information are still questionable. It is therefore important to
test these methods using different complex and real systems.
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